THE ATLAS COMPOSITE SPECTRA

Two composite spectra at two levels of solar activity as encountered during the ATLAS 1 and 3 missions covering the domain 0.5 nm to 2400 nm were built by using rocket data from 0.5 nm to Ly α from Woods et al. (1998), UARS (SUSIM and SOLSTICE), ATLAS 1-2-3 (SUSIM, SOLSTICE and SOLSPEC) data from Ly α to 400 nm, and SOLSPEC from 400 nm to 2400 nm from ATLAS and EURECA Missions.

Thuillier et al., Solar irradiance spectra, in Solar variability, AGU monograph 141, pp.171-194, 2004

ACCURACY 200-2400 nm : 3%
SOLSPEC MEASUREMENT OF THE SOLAR ABSOLUTE SPECTRAL IRRADIANCE FROM 165 TO 2900 nm ON BOARD THE INTERNATIONAL SPACE STATION

G. Thuillier¹, D. Bolsee², T. Foujols¹, D. Gillotay²

¹ LATMOS-CNRS, France
² Institut d’Aéronomie Spatiale de Belgique

SOLAR on COLUMBUS Laboratory
Launched on 7 Feb. 2008
INSTRUMENTS PRESENTLY IN SPACE: SOLAR (5/6)

SOLSPEC

Triple double gratings spectrometer using D2, W, HC lamps. Range: 170 - 3000 nm. Calibrated with the PTB blackbody. SOLSPEC was built in cooperation between France, Belgium and Germany.

SOL-ACES

SOL-ACES (G) is a-4 grazing incidence grating spectrometers plus two three-ionization chambers with exchangeable band pass filters to determine absolute fluxes from 17 to 140 nm.

SOVIM

Four absolute radiometers (PMO6 (Ch) and DIARAD (B) as on board SoHO, and two sunphotometers.
PRESENT SOLAR SPECTRAL IRRADIANCE MEASUREMENTS (2/6)

- ESA SOLAR TSI, SOL-ACES 17-140 nm
- SOLSPEC 170-3000 nm
- NOAA SBUV 170-400 nm
- SORCE SIM 200-2400 nm
- SORCE XPS 1-40 nm
- SORCE SOLSTICE 115-310 nm
- TIMED XPS 1-40 nm
- TIMED 26-195 nm
- EVE / SDO and Rocket 0.1-105 nm
The different techniques contribute to minimize the systematic uncertainties. Agreement between data sets gathered by instruments based on different concepts also ensure that measurements are achieved in the absolute scale.

METHODS OF CALIBRATION

<table>
<thead>
<tr>
<th>Instruments</th>
<th>Missions</th>
<th>Laboratory absolute calibration</th>
<th>In-space control</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIM</td>
<td>SORCE</td>
<td>Characterization</td>
<td>2 twin instruments</td>
</tr>
<tr>
<td>SOLSTICE</td>
<td>SORCE</td>
<td>Surf(^1) and D(_2) lamps</td>
<td>Stars</td>
</tr>
<tr>
<td>SEE</td>
<td>TIMED</td>
<td>Absolute detectors</td>
<td></td>
</tr>
<tr>
<td>SOL-ACES</td>
<td>SOLAR-ISS</td>
<td>SURF(^2)</td>
<td></td>
</tr>
<tr>
<td>SOLSPEC</td>
<td>SOLAR-ISS</td>
<td>PTB blackbody and D2 lamps calibrated by PTB</td>
<td>D2, W, HC lamps</td>
</tr>
<tr>
<td>EVE</td>
<td>SDO</td>
<td>Surf(^1)</td>
<td>Led (flatfield)</td>
</tr>
</tbody>
</table>

Note:

SURF: Synchrotron Ultraviolet Radiation Facility. 1= NIST; 2= PTB
Principle of the SOLSPEC spectrometer (1/2)

- 3 double-monochromators (UV, VIS, IR) allow to cover the range 165-3080 nm

- The six gratings simultaneously rotate

- References on board:
 - One hollow cathode lamp (HCL) providing lines from Argon, Zn and Cu to measure the slit function and the dispersion law.
 - Four tungsten ribbon lamps for the VIS and IR spectrometers calibration
 - Two deuterium lamps for the UV spectrometer calibration

- Entrance slits are covered by diffusors

- Quartz plates and a hole are carried by a wheel. The plates can be placed in front of the entrance diffusors to ensure their protection.

- A sensor measures the Sun position/platform axis.
* There are 2 movable quartz plates (Q1, Q2) per spectrometer
Spectral characteristics:

Total spectral range: 165-3080 nm

UV spectrometer: 165-380 nm, spectral width: 1 nm, sampling 0.1 nm

VIS spectrometer: 300-980 nm, spectral width: 1 nm, sampling 0.25 nm

IR spectrometer: 800-3080 nm, spectral width 9 nm, sampling 1 nm

Principle of the SOLSPEC spectrometer (2/2)

Detectors: PMT in UV and visible domains, PbS cell in IR. Vis and IR detectors are cooled.

Signals: Counting for PMT’s, synchronous detection in IR (16 bits, 3 gains)

PMT’s data acquisition works with two modes

- at fixed integration time
- at fixed counts (fixed precision)
HOW TO LIMIT AGEING AND HOW IT CAN BE MONITORED?

- Sampling has to be minimum to achieve the scientific objectives
- Keep warm the optical entrance pupille
- Protect the instrument entrance by a tight shutter able to be open and close without limitation
- There are several exchangable entrance windows for each spectrometer:

 The same window is usually used (Q1), the second window (Q2) is used from time to time. We periodically measured the ratio Q1/Q2 as well as the absolute transmission of both Q1 and Q2.

- The set of lamps D2 and tungsten ribbon lamps allows us to check the instrument reponsivity. For redundancy, two lamps of each type are foreseen.
- The HC lamp allows measurements of the dispersion law, the instrument \(psf \).
- It also allows to monitor the ageing by a new method.
INSTRUMENT CALIBRATION

<table>
<thead>
<tr>
<th>Calibration Feature</th>
<th>Ground</th>
<th>Orbit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute photometry</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Relative photometry</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Linearity</td>
<td>X</td>
<td>≈X</td>
</tr>
<tr>
<td>Slit Function</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Dispersion law</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Scattered light</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Flatfield</td>
<td>x*</td>
<td>X</td>
</tr>
<tr>
<td>Second order contribution</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

* More precise in space
CALIBRATION MEASUREMENTS ONLY
ACHIEVABLE ON GROUND

- Absolute photometric response

- Linearity can be easily achieved on ground, with more difficulties in orbit.
The Sun will not generate a signal greater than 10^5.
HOLLOW CATHODE LAMP

Role:

- Measures in orbit the slit function
- Measures in orbit the dispersion law
- Used as reference source
LINES PROVIDED BY THE HOLLOW CATHODE LAMP

Signal UV (cps.s⁻¹)

Signal VIS (cps.s⁻¹)
Spectrometers Slit Functions in UV, VIS, IR

SOLSPEC UV - Fonctions de fente en fonction de λ

SOLSPEC VIS - Fonctions de fente en fonction de λ

SOLSPEC IR - Fonctions de fente en fonction de λ
SLIT FUNCTION

With an isolated line

R13 - (visible)
Ar I 763.51 nm

When two lines are adjacent in the slit function

R1 - (UV)
Zn I 213.86 nm
The line wavelength associated to the corresponding step number allows to derive the dispersion law. It is consistent with the theoretical law.
The s/n ratio remains acceptable.
BEHAVIOR SPECTRAL CHARACTERISTICS IN SPACE AS A FUNCTION OF TIME
THE LINE INTENSITY COVARIANCE

Line 249 nm (red)
Line 738 nm (black)
FLATFIELD MEASUREMENTS IN ORBIT

SOLSPEC - Réponse angulaire - Canal UV
Comparaison: mesures sol + criss-cross n°1 (080505)
criss-cross n°2 (080608)
Meridiens perpendiculaires aux fentes (associé à Y PSD)

Shift appliqué : + 30 arcminutes aux criss-cross

SOLSPEC - Réponse angulaire - Canal VIS
Comparaison: mesures sol + criss-cross n°1 (080505)
criss-cross n°2 (080608)
Meridiens perpendiculaires aux fentes (associé à Y PSD)

Shift appliqué : + 45 arcminutes aux criss-cross

SOLSPEC IR - Facteur de correction angulaire (par quotient) entre l'axe optique
des spectromètres et le pointage solaire actuel
Facteur déduit du méridien 'Criss-cross' selon Y PSD pour X PSD css (-32°)

Points expérimentaux
Interpolation
STRATEGY OF QUARTZ PLATES USE

Each spectrometer is equipped by two quartz plates. They are set on a wheel together with a hole. They allow to protect the entrance diffusors from the hard radiation.

Operations:

- Solar measurements are daily made with Q_1
- Once per month, Q_2 is exposed to measure the transmission ratio Q_1/Q_2
- Q_1 transmission is also measured by measuring the ratio Q_1/hole.
QUARTZ Q1 AGING AT 288 nm

Q1 is the most frequently used quartz plate.
BEHAVIOR OF D2 LAMP IN ORBIT

Signal D1 à 200 nm
Signal solaire à 200 nm (à 1 UA)
Nomrmalisation début mai 2008

200nm

Signal D1 à 220 nm
Signal solaire à 220 nm (à 1 UA)
Nomrmalisation début mai 2008

220nm

Signal D1 à 250 nm
Signal solaire à 250 nm (à 1 UA)

250nm
D2 LAMPS POWER SUPPLY

It failed. Then, no D2 can be activated.

How to solve this problem?

We use the following facts:

- the aging in visible and IR is very small and furthermore it is controlled by use of the two tungsten ribbon lamps,
- the covariance of the lines hollow cathode lamp allows to monitor the line intensity in UV.

This procedure has been validated for the period where the D2 were still working.
CONCLUSIONS

Instruments in space are exposed to several sources of ageing: contamination, particles, EUV.

Adding on board means (7 lamps,) with redundancy, which imply a more complex instrument (7 motors, 3 shutters, optical fibers, ...) allows to perform many controls (scattered light, psf, ...) and generate specific data to monitor the ageing to perform the corrections.

On board, many types of calibration can be run (scattered light, quartz transmission, FF, wavelength scale, psf, ...).

Quasi no aging exists in visible and IR. In UV, it is monitored and corrected by use of the aboard lamps (D2, then HCL).

Consequently, the instrument responsivity change in time is recovered.

Finally, SOLSPEC is a solar spectrometer associated with a set of means to generate characteristicaion data in orbit.

SOLSPEC = a Solar spectrometer + a space laboratory
SECOND ORDER EFFECT

SOLSPEC - Canal UV - Etude de l'ordre 2
Comparaison entre l'ordre 1 et la contamination d'ordre 2 pour une mesure solaire

Canal UV, mesure solaire en orbite
ABSOLUTE CALIBRATION AT PTB

We use the Blackbody at PTB (Braunschweig, Germany) NIST FEL lamps and a D2 lamp (V0132 calibrated by PTB below 250 nm)

Temperature is recorded by three radiometers: at rear of BB for control (red, PTB), In front (blue, PTB), in front (black, SOLSPEC).

PTB ensures an absolute temperature at 0.44 K accuracy.
SOLSPEC responsivity using BB: in red. As the BB is not usable below 200 nm, a D2 lamp was used (blue) calibrated by PTB in vacuum. This lamp and SOLSPEC were set in a vacuum chamber. Given the dimension of the chamber, the distance Instrument/lamp was very short → scattered light. After taking into account this effect, an agreement was found in the overlapping region.